Lyapunov exponent of ion motion in microplasmas.

نویسنده

  • Pierre Gaspard
چکیده

Dynamical chaos is studied in the Hamiltonian motion of ions confined in a Penning trap and forming so-called microplasmas. The dynamical chaos of the ion motion is characterized by the maximum Lyapunov exponent. Results are reported on the dependence of this exponent on the energy of the system, on the number of ions, as well as on the geometry of the trap. Different dynamical regimes are characterized from the crystalline state to a strongly chaotic regime, and to quasiharmonic motion in the external potential of the trap. Across these regimes, the Lyapunov exponent increases, reaches a maximum value, and decreases as a function of energy. Besides, the maximum value of the Lyapunov exponent increases as a function of the number of ions.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear Dynamics and Chaos in Many-Particle Hamiltonian Systems

We report the results of studies of nonlinear dynamics and dynamical chaos in Hamiltonian systems composed of many interacting particles. The importance of the Lyapunov exponents and the Kolmogorov-Sinai entropy is discussed in the context of ergodic theory and nonequilibrium statistical mechanics. Two types of systems are studied: hard-ball models for the motion of a tracer or Brownian particl...

متن کامل

Analysis of chaotic vibration in a hexagonal centrifugal governor system

In this paper, the periodic, quasi periodic and chaotic responses of rotational machines with a hexagonal centrifugal governor are studied. The external disturbance is assumed as a sinusoid effect. By using the forth order Rung-Kutta numerical integration method, bifurcation diagram, largest Lyapunov exponent and Lyapunov dimension are calculated and presented to detect the critical controlling...

متن کامل

Studying Transition Behavior of Neutron Point Kinetics Equations Using the Lyapunov Exponent Method

The neutron density is one of the most important dynamical parameters in a reactor. It is directly related to the control and stability of the reactor power. Any change in applied reactivity and some of dynamical parameters in the reactor causes a change in the neutron density. Lyapunov exponent method is a powerful tool for investigating the range of stability and the transient behavior of the...

متن کامل

Stability of a Stochastic Two-Dimensional Non-Hamiltonian System

We study the largest Lyapunov exponent of the response of a two dimensional non-Hamiltonian system driven by additive white noise. The specific system we consider is the third-order truncated normal form of the unfolding of a Hopf bifurcation. We show that in the small-noise limit the top Lyapunov exponent always approaches zero from below (and is thus negative for noise sufficiently small); we...

متن کامل

Chaotic dynamic analysis and nonlinear control of blood glucose regulation system in type 1 diabetic patients

In this paper, chaotic dynamic and nonlinear control in a glucose-insulin system in types I diabetic patients and a healthy person have been investigated. Chaotic analysis methods of the blood glucose system include Lyapunov exponent and power spectral density based on the time series derived from the clinical data. Wolf's algorithm is used to calculate the Lyapunov exponent, which positive val...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Physical review. E, Statistical, nonlinear, and soft matter physics

دوره 68 5 Pt 2  شماره 

صفحات  -

تاریخ انتشار 2003